Examples for Parabolic Antenna

1- A parabolic dish with diameter of 3 ft operates at 10 GHZ , determine the approximate gain , beam width , and the distance for farfield region operation , The illumination efficiency is 55%.

Solution

$D=3 \mathrm{ft}=36$ inch ,, $\mathrm{ft}=12$ inch ,, inch $=2.5 \mathrm{~cm}$.
$D=36 * 2.5=90 \mathrm{~cm}$
$\mathrm{f}=10 \mathrm{GHZ}$
$\lambda=\frac{C}{F}=\frac{3 * 10^{\wedge} 8}{10 * 10^{\wedge} 9}=0.03 \mathrm{~m}=3 \mathrm{~cm}$.
Gain $=\mathrm{e}_{\mathrm{A}}\left(\frac{\pi D}{\lambda}\right)^{2}=0.55\left(\frac{\pi * 90}{3}\right)^{2}=5047$ where e_{A} is illumination efficiency
-Gain (db) $=10 \log (5047)=37$.
-Beamwidth $=K\left(\frac{\lambda}{D}\right)=70\left(\frac{3}{90}\right)=2.29^{\circ}$
For a "typical" parabolic antenna k is approximately 70.

- the distance for farfield $R>\frac{2 D^{\wedge} 2}{\lambda}=183 \mathrm{ft}$ or 2196 inch .

1- 2 m radius parabolic dish is sufficient for receiving signal at frequency of 12 GHZ , what is the required distance to receive same level of signal at frequency 6 GHZ .

Solution

$D_{1}=2 r_{1}=2 * 2=4 m, f_{1}=12 G H Z,,, f_{2}=6 G H Z /$
$\lambda_{1}=\mathrm{C} / \mathrm{f}_{1}=0.025 \mathrm{~m}$.
$\lambda_{2}=C / f_{2}=0.05 \mathrm{~m}$.
same level of signal means

$$
\begin{aligned}
& \text { Gain }_{1}=\text { Gain }_{2} \\
& \mathrm{e}_{\mathrm{A}}\left(\frac{\pi \mathrm{D} 1}{\lambda 1}\right)^{2}=\mathrm{e}_{\mathrm{A}}\left(\frac{\pi D 2}{\lambda 2}\right)^{2}
\end{aligned}
$$

$$
\left(\frac{D 1}{\lambda 1}\right)=\left(\frac{D 2}{\lambda 2}\right)
$$

$$
D_{2}=8 \mathrm{~m} \quad, \quad r_{2}=4 \mathrm{~m}
$$

3-Assuming Aperature efficiency is 70\%, what is the gain of parabolic dish antenna as function of it's radius.

Solution

Aperature efficiency is 70\% ($\mathrm{K}=70 \%$)
$D=2 r$
Gain $=\mathrm{e}_{\mathrm{A}}\left(\frac{\pi D}{\lambda}\right)^{2}$
$\mathrm{G}=0.7\left(\frac{\pi * 2 r}{\lambda}\right)^{2}$
$\mathrm{G}=0.7 \frac{4 \pi^{\wedge} 2 * r^{\wedge} 2}{\lambda^{\wedge} 2}$

$$
\mathrm{G}=27.6\left(\frac{r^{\wedge} 2}{\lambda^{\wedge} 2}\right)
$$

4- 1 m diameter parabolic dish is used as receiving antenna for satellite TV reception at 6 GHZ ,, determine at 3 GHZ the HPBW if the same level of signal is received.

Solution

$$
\begin{aligned}
& -\quad D_{1}=1 \mathrm{~m}, \prime \\
& F_{1}=6 \mathrm{GHZ} \quad, F_{2}=3 \mathrm{GHZ} . \\
& \lambda_{1}=C / F_{1}=0.05 \mathrm{~m} . \\
& \lambda_{2}=C / F_{2}=0.1 \mathrm{~m} . \\
& \text { the same level of signal_means } \\
& \mathrm{G}_{1}=\mathrm{G}_{2} \\
& \mathrm{e}_{\mathrm{A}}\left(\frac{\pi \mathrm{D} 1}{\lambda 1}\right)^{2}=\mathrm{e}_{\mathrm{A}}\left(\frac{\pi D 2}{\lambda 2}\right)^{2} \\
& \left(\frac{D 1}{\lambda 1}\right) \quad=\left(\frac{D 2}{\lambda 2}\right) \\
& \mathrm{D}_{2}=2 \mathrm{~m}, \mathrm{r}_{2}=1 \mathrm{~m}
\end{aligned}
$$

- HPBW $=K\left(\frac{\lambda}{D}\right)=70\left(\frac{\lambda}{D}\right)$
-For a "typical" parabolic antenna k is approximately 70.
- If we choose $\lambda_{1} \& D_{1}$

HPBW $=70\left(\frac{\lambda 1}{D 1}\right)$

```
HPBWW =3.5
```

5- Calculate the directivity of an antenna with circular aperature of diameter $3 m$ of frequency 5GHZ ..

Solution

$D=3 \mathrm{~m}, \mathrm{r}=1.5 \mathrm{~m}$.
$\mathrm{F}=5 \mathrm{GHZ}$.
$\lambda=C / f=0.06 m$
circular aperature, $\mathrm{A}_{\text {emax }}=\pi r^{2}$.
$A_{\text {emax }}=A_{e}$ as $\eta=100 \%$.
$\mathrm{A}_{\mathrm{e}}=\pi r^{2}=\pi(1.5)^{2}$.
Directivity $=\frac{4 \pi \mathrm{Ae}}{\lambda^{\wedge} 2}$

Example on spherical reflector

-for a given maximum aperture size there exists a maximum value of total allowable phase error, and it is given by

$$
\left(\frac{a}{R}\right)_{\max }^{4}=14.7 \frac{(\Delta / \lambda)_{\mathrm{total}}}{(R / \lambda)}
$$

- where (Δ / λ) is the total phase error in wavelengths

Example 154

$$
\begin{aligned}
& \text { i= }=0.10884
\end{aligned}
$$

$$
\begin{aligned}
& { }^{4} \times 1 \text { II. } 1.9 \\
& a=1.18 \mathrm{ft}
\end{aligned}
$$

