Examples for Parabolic Antenna

1- A parabolic dish with diameter of 3ft operates at 10GHZ, determine the approximate gain , beam width , and the distance for farfield region operation , The illumination efficiency is 55%.

<u>Solution</u>

D=3ft=36 inch ,, ft=12 inch ,, inch = 2.5 cm .

D=36*2.5 = 90 cm

f=10GHZ

 $\lambda = \frac{C}{F} = \frac{3*10^{8}}{10*10^{9}} = 0.03 \text{m} = 3 \text{ cm} .$

Gain = $e_A(\frac{\pi D}{\lambda})^2 = 0.55(\frac{\pi * 90}{3})^2 = 5047$ where e_A is illumination efficiency

-Gain (db) = 10 log(5047)=37.

-Beamwidth= $K(\frac{\lambda}{D})=70(\frac{3}{90})=2.29^{\circ}$ For a "typical" parabolic antenna *k* is approximately 70.

- the distance for farfield $R > \frac{2D^2}{\lambda} = 183$ ft or 2196 inch .

 2m radius parabolic dish is sufficient for receiving signal at frequency of 12 GHZ, what is the required distance to receive same level of signal at frequency 6GHZ.

<u>Solution</u>

 $D_1=2r_1=2*2=4m$,, $f_1=12GHZ$,,, $f_2=6GHZ/$

 $\lambda_1 = C/f_1 = 0.025m.$

 $\lambda_2 = C/f_2 = 0.05m.$

same level of signal means

 $Gain_1 = Gain_2$

$$e_{A}(\frac{\pi D1}{\lambda 1})^{2} = e_{A}(\frac{\pi D2}{\lambda 2})^{2}$$

$$\left(\frac{D_1}{\lambda_1}\right) = \left(\frac{D_2}{\lambda_2}\right)$$
 D₂=8m ,, r₂=4m.

3-Assuming Aperature efficiency is 70%, what is the gain of parabolic dish antenna as function of it's radius.

Solution

Aperature efficiency is 70% (K=70%)

D=2r

Gain =
$$e_A(\frac{\pi D}{\lambda})^2$$

$$\mathsf{G=0.7}\ (\frac{\pi * 2r}{\lambda})^2$$

G=0.7 $\frac{4\pi^{2} * r^{2}}{\lambda^{2}}$

4- 1m diameter parabolic dish is used as receiving antenna for satellite TV reception at 6GHZ ,, determine at 3GHZ the HPBW if the same level of signal is received .

<u>Solution</u>

- F_1 = 6GHZ , F_2 =3GHZ.

 λ $_1$ =C/F1==0.05 m . λ $_2$ =C/F2==0.1m $\ .$ the same level of signal_means

$$G_1 = G_2$$

$$e_{A}(\frac{\pi D1}{\lambda 1})^{2} = e_{A}(\frac{\pi D2}{\lambda 2})^{2}$$

$$\left(\frac{D1}{\lambda 1}\right) = \left(\frac{D2}{\lambda 2}\right)$$

 $D_2{=}2m \ , r_2{=}1m$

-HPBW = K $\left(\frac{\lambda}{D}\right)$ =70($\frac{\lambda}{D}$) -For a "typical" parabolic antenna *k* is approximately **70**. - If we choose $\lambda_1 \& D_1$

HPBW=70($\frac{\lambda 1}{D 1}$)

HPBW = 3.5°

5- Calculate the directivity of an antenna with circular aperature of diameter 3m of frequency 5GHZ ..

Solution

D=3m , r=1.5m . F=5GHZ. λ =C/f =0.06m circular aperature , A_{emax}= πr^2 . A_{emax} = A_e as η =100% .

 $A_e = \pi r^2 = \pi (1.5)^2$.

Directivity = $\frac{4\pi Ae}{\lambda^2}$

Directivity = 24674

Example on spherical reflector

-for a given maximum aperture size there exists a maximum value of total allowable phase error, and it is given by

$$\left(\frac{a}{R}\right)_{\max}^4 = 14.7 \frac{(\Delta/\lambda)_{\text{total}}}{(R/\lambda)}$$

- where (Δ/λ) is the total phase error in wavelengths

Example 15.4

A spherical reflector has a 10-ft diameter. If at 11.2 GHz the maximum allowable phase error is $\lambda/16$, find the maximum permissible aperture. Solution: At f = 11.2 GHz

$$\lambda = 0.08788 \text{ ft}$$

$$\left(\frac{a}{R}\right)_{\text{max}}^{4} = 14.7 \left(\frac{1/16}{56.8957}\right) = 0.01615$$

$$a^{4} \simeq 10.09$$

$$a = 1.78 \text{ ft}$$